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Fig. 1: An overview of SafeShift. Our framework consists of a scoring methodology that uses counterfactual probing to
characterize and score scenarios, exploring what-if scenarios where proactive maneuvers were not performed, thus resulting
in safety-criticality or near misses. We also apply and assesses this scoring approach on two downstream tasks: safety-
informed distribution shift creation, where challenging scenarios are found and held out for evaluation; and robust trajectory
prediction, where trajectory prediction algorithms are assessed under this distribution shift and remediated.

Abstract— As autonomous driving technology matures, the
safety and robustness of its key components, including tra-
jectory prediction is vital. Although real-world datasets such
as Waymo Open Motion provide recorded real scenarios, the
majority of the scenes appear benign, often lacking diverse
safety-critical situations that are essential for developing robust
models against nuanced risks. However, generating safety-
critical data using simulation faces severe simulation to real
gap. Using real-world environments is even less desirable due
to safety risks. In this context, we propose an approach
to utilize existing real-world datasets by identifying safety-
relevant scenarios naively overlooked, e.g., near misses and
proactive maneuvers. Our approach expands the spectrum
of safety-relevance, allowing us to study trajectory prediction
models under a safety-informed, distribution shift setting. We
contribute a versatile scenario characterization method, a novel
scoring scheme for reevaluating a scene using counterfactual
scenarios to find hidden risky scenarios, and an evaluation
of trajectory prediction models in this setting. We further
contribute a remediation strategy, achieving a 10% average
reduction in predicted trajectories’ collision rates. To facilitate
future research, we release our code for this overall SafeShift
framework to the public: github.com/cmubig/SafeShift

I. INTRODUCTION

As autonomous driving (AD) technologies are increasingly
deployed in the wild, the safety and robustness of the
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autonomous systems remain chief concerns [1]–[3]. One key
AD task is that of trajectory prediction, wherein the future
trajectories of agents in a scene must be predicted, given a
brief historical observation. These predictions may be used
in the downstream portion of conventional vehicle control
stacks, to inform an ego-agent’s motion planner as it at-
tempts to find possible conflict-free and traffic infraction-free
paths. Thus, improving the agent’s robustness and its ability
to detect possibly safety-critical scenarios is of paramount
importance in ensuring the overall acceptable performance
of autonomous vehicles in real-world deployments [4].

It is appealing to train trajectory prediction models using
large real-world motion prediction datasets, such as the
Waymo Open Motion Dataset (WOMD) [5], as they consist
of recorded scenarios capturing the behaviors of various
agents—human drivers and vulnerable road users (VRUs),
e.g., cyclists and pedestrians—under real-world traffic lay-
outs and densities. One inherent challenge in using such
datasets, however, is that the frequency of vehicle infractions
and other safety-critical scenarios therein is quite low. The
prior art regards this issue as the “curse of rarity” [6]–[8] and,
as a result, industry and academia have resorted to validating
autonomous driving agents via on-road tests [9], [10], where
those valuable rare events are also potentially dangerous to
other drivers and VRUs, or via simulated experiments [6]–
[8], wherein the artificial behaviors of agents and inaccurate
world physics in the simulators can leave models unprepared
and inadequate for real-world deployment [11], [12].
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Recently, several works have identified a potential solution
to this challenge of robust training, by generating “new”
traffic scenes that serve as training samples for otherwise
rare events and/or as difficult test-cases to challenge already-
trained models. Unfortunately, despite recent advances in
safety-critical scenario generation methods [13]–[15], gener-
ating non-trivially challenging cases that match the realism,
frequency, and difficulty of safety-critical scenarios that
agents might encounter in the real world remains an open
problem. An effective and under-explored alternative lies
somewhere in the middle: we propose an approach to mine
large-scale datasets of real-world vehicle deployments to find
and leverage meaningful safety-relevant scenarios that may
be hidden in the data. Our key insight is that, in autonomous
driving, safety-relevance includes not just scenarios where
observed agents act in a safety-critical manner, but also
scenarios where agents are able to avoid infractions through
proactive maneuvers. Therefore, we propose to leverage
counterfactual probes to additionally characterize what-if
scenarios where these proactive maneuvers were not per-
formed. Such fine-grained scenario characterization enables
trajectory forecasting models to more easily distill diverse
defensive driving skills [16] from existing datasets, e.g.,
preemptive braking as illustrated in Figure 1 (left).

Under this paradigm of scenario characterization, we
propose the SafeShift framework for identifying and
studying the most safety-relevant scenarios in a widely-
available autonomous driving dataset. The more extreme
scenarios are held out as an out-of-distribution (OOD) test-
set, thus acting as a stand-in for the valuable and rare, long-
tailed events. In this way, we avoid both the challenges of
attempting to generate new safety-critical scenarios as well
as the challenges in performing simulation-to-real transfer;
instead, we optimize the usefulness of existing data. To the
best of our knowledge, prior work that focuses on creating
artificial distribution shifts have not done so based on safety-
relevance, instead focusing on, e.g., lane or global location
characteristics [17], [18], speed of driving [19], or the city
that the data was captured in [19]. Furthermore, prior efforts
in scenario characterization under distribution shift settings
rely on empirical, dataset-specific heuristics [20]–[22].

Our main contributions, illustrated in Figure 1, are thus as
follows: 1) A versatile approach for scenario characterization
in autonomous driving, focused on capturing safety-relevant
scenarios; 2) A methodology for scoring safety-criticality for
the purposes of crafting a distribution shift, including novel
progress in incorporating the aforementioned fuller spec-
trum of safety-relevance, and improving safety performance
therein; and 3) An evaluation of existing socially-aware
trajectory prediction approaches in this safety-informed dis-
tribution shift setting, utilizing WOMD [5] as an exemplar.
Our developed remediation strategy for this setting reduces
the predicted trajectories’ collision rates by an average of
10%, across the tested models.

II. RELATED WORK

A. Socially-Aware Trajectory Prediction

Motion prediction in crowded environments is a well-
researched task in the domains of autonomous driving and
motion in human crowds [23]. Most current approaches
for motion prediction are data-driven, i.e., they focus on
characterizing behavior and interactions observed in the data.
To capture a multi-modal distribution of possible futures,
generative frameworks are frequently used [24]–[29]. To
model joint behavior and social cues, various techniques
such as social pooling [30], rasterized representations [31],
and attention-based methods [24], [27], [32], [33] have been
employed. Several state-of-the-art techniques have also ex-
plored learning richer representations for motion prediction,
such as modeling context information as road graphs or
polylines [34], [35] and goal conditioning [25].

B. Robustness Assessment in Trajectory Prediction

One approach to examine robustness for trajectory predic-
tion is robustness to adversarial attacks. Recent studies have
shown that state-of-the-art prediction models often lack basic
social awareness and collision avoidance when faced with
these attacks [36]–[38]. A significant disadvantage with these
techniques however is that they ultimately rely on simulating
realistic agent behavior, which often incurs a simulation-
to-real gap [11]–[13], [39]. Another approach to ensuring
robustness involves studying models’ performances under a
data domain distribution shift setting, recognizing that AD
models will ultimately encounter unseen scenarios in the
wild. Some approaches involve identifying domains based
on meta characteristics of the scene, such as road shape
characteristics, side-of-driving, and average speeds [17],
[19]. Another recent method explores clustering scenes into
domains based on several features, including lane deflection
angles, global bounds of the scenario and trajectories, and
lane shape information [18]. Many of these works also
include domain adaptation or remediation strategies to reduce
the impact of the distribution shift, such as by leveraging
Frenet coordinates [18], [40], few-shot adaptation [17], or
motion-based style transfer [41]. However, to the best of
our knowledge, no work has attempted to create distribution
shifts based on safety-relevance or study remediation therein.

C. Critical Scenario Identification in Autonomous Driving

Many existing datasets rely on mining the immense
amount of collected data from road-tests for interesting
scenes [5], [42], [43], considering surface-level metrics such
as traffic density and kinematic complexity. Therefore, prior
frameworks for critical scenario identification (CSI) have
been designed to expand upon these initial dataset char-
acterizations [44], [45]. These frameworks typically focus
on creating taxonomies for categorizing conflict scenarios,
as well as for developing metrics and validation meth-
ods to describe and cope with them. In [21], scenarios
are instead hierarchically scored along metrics related to
anomaly, interestingness, and relevance, better handling more
complex maneuvers. Another recent work expands beyond
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Fig. 2: Pearson correlation coefficients for each pair of metrics, showing how the features complement each other. Analysis
performed on WOMD [5].

this by defining complexity aspects relating to the road
graph layout, surrounding objects, and topology of agents’
paths [22]. However, the use of these surrogate metrics
for CSI alone, without applying counterfactual reasoning,
can fail to identify more subtle safety-relevant scenarios,
as illustrated in Figure 1. Furthermore, these metrics often
rely on empirical weighting and thresholding schemes, as
well as on privileged information not uniformly available
in AD datasets (e.g., global reference frames, drivable area
identification, etc.) [21], [22]; thus they cannot be applied to
several key datasets, including WOMD.

III. PRELIMINARIES

In this section, we define the task of trajectory predic-
tion under distribution shifts. First, we consider the set of
scenarios that comprise a motion prediction dataset as S.
Thus, we denote s ∈ S as a single scenario taken from this
corpus. The scenario s consists of all agent tracks X, map
information, and meta information. Agent tracks are the time-
varying locations of every observed agent in the scene, in a
Cartesian frame, where X

(i)
t denotes the location of agent i

at timestep t. The map contains road information, e.g., lane
locations and lane connectivity, and the meta information
provides additional task specifications, such as the list of
which agents are to be predicted.1

The information in s is further split into a history and
future portion: shist = {s1, s2, ..., sTobs

} and sfut =
{sTobs+1

, sTobs+2
, ..., sTtot

}, where Tobs denotes the timestep
before the prediction horizon and Ttot denotes the total
length of the scene. Thus, the task of trajectory prediction is
to jointly estimate the values of X(i)

fut, using only shist, for
all agents i ∈ {1, 2, 3, ...}.

1The exact format of s, such as the origin of the Cartesian frame or
specific set of map information provided, varies from dataset to dataset.

Under distribution shift conditions, S may be split into two
sets—SID, representing the in-distribution set, and SOOD

representing the out-of-distribution set. The task of robust
trajectory prediction then, is to minimize the drop in per-
formance on safety-relevant metrics for trajectory prediction
(i.e., collision rates) when prediction models are tested on
SOOD, after being trained and validated only on SID.

The remaining sections in this work are organized as
follows. In Section IV and Section V, we propose a novel
scenario-characterization framework and scoring methodol-
ogy. Then in Section VI and Section VII, we show how to
leverage our framework for introducing safety-informed dis-
tribution shifts in a given autonomous driving dataset and for
developing remediation strategies to improve the robustness
of trajectory prediction models. Finally in Section VIII we
discuss the results and implications of these experiments.

IV. SCENARIO FEATURES

We propose a hierarchical scheme as in [21], [22], where
low-level, base features are computed within a scenario
and then later aggregated to form a score representing a
scenario’s overall safety-relevance. We consider base features
across two main categories: individual features related to
single-agent behavior and social features relevant to the
interactions between agents.

For both of these categories, accurate lane assignment is
highly important but is nontrivial, e.g., VRUs often do not
adhere to lanes. Whereas a simple method of snapping to the
best-fitting local lane has been used in previous work [18],
we instead leverage a probabilistic approach [46] to find
valid lane sequences for agents. Additionally, we permit lane
assignments based on physically plausible lane deflection
angles rather than the lane connectivity graph alone. We
excluded some features utilized in previous frameworks and



Fig. 3: PDF of our score variations, exhibiting long-tailed
behavior. Analysis performed in WOMD [5].

TABLE I: Trajectory scoring variations.

Variation IndScore SocScore

Ground Truth (GT ) X
(i)
GT (X

(i)
GT , X(j)

GT )

Future Extrapolated (FE) X
(i)
FE (X(i)

FE , X(j)
FE )

Asymmetric (AS) X
(i)
FE (X(i)

FE , X(j)
GT )

Combined (CO) max(TrajScoreGT,TrajScoreFE)

Asymmetric Combined (AC) max(TrajScoreGT,TrajScoreAS)

datasets [20], [21], such as driving region-based anomaly de-
tection, that require the knowledge of global, city coordinates
which are not generally available across all AD datasets.
Instead, to identify anomalies, we utilize a traffic primitive
extraction and clustering approach pioneered in [47]. This
process produces cluster centers for both single trajectories
and trajectory pairs, allowing us to easily measure anomalies.
Individual Features: We primarily focus on metrics derived
from relative positional data of a trajectory, such as speed,
acceleration, and jerk. We additionally implement metrics to
incorporate map context, including waiting period (WP) [48],
speed difference with the lane’s speed limit, and the percent-
age of time that the agent is following a lane. Finally, we
include a trajectory anomaly value, derived from its distance
to the nearest individual traffic primitive cluster.
Social Features: We use widely studied and accepted safety
surrogate metrics, as in [21], [49], [50]. These include time
headway (THW), time-to-collision (TTC), deceleration rate
to avoid crash (DRAC), and the difference between minimum
time to conflict points (∆mTTCP) in both agent trajectories
and road graph locations of interest (e.g., crosswalks, stop
signs). We then incorporate a measure of collisions directly,
counting situations where two agents’ center points or seg-
mented paths overlap at a given timestep. Finally, analogous
to the individual trajectory anomaly, we add a trajectory-pair
anomaly value using paired traffic primitive clusters.

Our full feature selection, along with a correlation anal-
ysis is shown in Figure 2. For the individual features, the
kinematic-based ones correlate positively, as could be ex-
pected, while the other features are largely weakly correlated.
Similarly, for the social features, TTC and THW have a weak
correlation, as they both involve a leader-follower scenario.

The two forms of ∆mTTCP are also relatively strongly
correlated, as agent trajectories are required to be somewhat
intertwined for both. This analysis implies that the selection
and extraction of base features are largely complementary,
without excessive overlap in coverage.

V. SCENARIO SCORING

Using the base features described in Section IV, we define
a safety-relevance scoring function that can characterize a
given scenario. We then propose a counterfactual re-scoring
approach where we re-characterize the same scenario by
taking what-if alternatives into account.

A. Scoring Functions

We start by hierarchically aggregating the base features
to create overall trajectory and scene scores as follows. Let
Vind be the total set of extracted individual features, Vsoc

be the set of social features, and v ∈ V represent a single
feature taken from one of these sets (e.g., acceleration, TTC,
etc.). Then, let v(i)t be such an extracted individual feature
v for trajectory i at timestep t. Similarly, v

(i,j)
t denotes a

social feature over trajectories i and j together.
To combine these extracted base features, we first convert

them to a form in which a larger value corresponds to more
safety-relevance (i.e., for features such as speed, we use v
directly, but for features such as TTC, we use 1/v). We then
aggregate the individual features into an individual score. We
take the maximum value for each metric incurred throughout
the trajectory and then linearly combine them according to
weights specified in [21]; let these weights be denoted as
Wind and Wsoc. Then, a trajectory’s individual score is
expressed in Equation (1), where “ · ” denotes the vector
scalar product:

IndScore(i) = Wind ·
[
max

t
(v

(i)
t ) | v ∈ Vind

]
(1)

Note that we do not perform any sort of value detection
thresholding to avoid reliance on empirical decision making.
Similarly, for each pair of trajectories, we compute a social
score, as follows in Equation (2):

SocScore(i,j) = Wsoc ·
[
max

t
(v

(i,j)
t ) | v ∈ Vsoc

]
(2)

An agent’s trajectory score is then computed by adding
together its individual score with the social score of all
trajectory pairs it is involved in:

TrajScore(i) = IndScore(i)+
∑
j ̸=i

SocScore(i,j) (3)

We combine these TrajScores into a final
SceneScore as follows. We begin by taking the
weighted sum of all agents’ scores in the scene, where
each weight is inversely proportionate to its minimum
distance to an agent marked as requiring prediction. Then,
to regularize the effect of scene density, we normalize this
total, proportionate to the total number of agents present.



Fig. 4: Examples of WOMD [27] scenes by score. In-Distribution and Out-of-Distribution follow our Scoring split in
Section VI-A.

B. Counterfactual Re-Scoring

The key insight of counterfactual re-scoring is to assess
the safety-criticality of a scenario based on potential what-
if cases in addition to the recorded ground truth event. We
hypothesize that the characterization using counterfactual
scenarios can capture the hidden risks better than using the
ground truth record only, which will subsequently result in
improved performance in downstream tasks such as robust
trajectory prediction.

To find scenarios beyond just those with high aggregated
criticality and/or surrogate criticality values, we wish to
perform a counterfactual probe into what could happen if an
agent were to simply maintain its current progress within a
lane. This represents, e.g., the behavior of a distracted driver
ignoring external factors. We craft this probe for an agent i by
first extracting its assigned lane sequence in X

(i)
hist. Next, we

convert its coordinates to a Frenet frame [40], a coordinate
system representing progress and displacements along the
given lanes’ centerlines. Finally, we perform a constant-
velocity extrapolation in the Frenet frame, to compute a
“future extrapolated” trajectory. For agents without a lane
assignment, we perform the same steps in Cartesian space.
We denote this future extrapolated trajectory as X

(i)
FE , in

contrast with the original ground truth trajectory, X(i)
GT .

To incorporate this method into the trajectory score in
Equation (3), we extract the individual and social features
of both X

(i)
GT and X

(i)
FE . We first compute the individual

score using X
(i)
FE . To compute the social interaction scores,

for a pair of interacting agents (i, j), we compute i’s social

score between (X
(i)
FE ,X

(j)
GT ) and j’s score analogously. We

denote this asymmetric score as TrajScore(i)
AS . Similarly,

we compute the reference ground truth score using exclu-
sively the GT trajectories for both agents and denote this as
TrajScore(i)

GT . We then take the maximum value of these
two scores into a final asymmetric combined trajectory score,
TrajScore(i)

AC . In Table I, we summarize these scoring
variations and ablations.

We compute a SceneScore for these trajectory vari-
ations by utilizing the corresponding TrajScore (e.g.,
SceneScoreFE uses TrajScoreFE exclusively, etc.).
As shown in Figure 3, this overall scene scoring method
follows a long-tailed distribution as desired. The scores that
incorporate future extrapolation have a much wider spread
than just the ground truth, indicating a greater variety of
scenarios captured.

VI. DOWNSTREAM TASKS

We showcase the utility of our scenario scores from
Section V by applying them to two downstream tasks: 1)
creating a safety-informed distribution shift to better evaluate
trajectory prediction models; and 2) leveraging the scores to
conduct remediation on such models, reducing the incurred
drop in performance.

A. Distribution Shift Creation

We wish to evaluate and improve the robustness of
trajectory prediction models when facing scenes more
challenging/safety-critical than those on which they were



trained. That is, we must split S in such a way that SID con-
tains relatively low safety-criticality while SOOD contains
the most criticality. Thus, we propose the following approach
of splitting S into the desired safety-informed subsets.

First, we implement a simple uniform, random train-
ing/validation/test split to analyze behavior absent of a
domain shift context: Uniform. Next, as a baseline, we
implement the cluster-based domain identification schema
from [18], representing a recent approach for domain shift
creation that focuses on other aspects of the scenarios instead
of safety-relevance: Clusters. Finally, we incorporate a
safety-informed approach leveraging our schema described
in Section V: Scoring. We hold out the top 20% scoring
scenes as the test set, then randomly partition the remaining
scenes into training and validation.

B. Robust Trajectory Prediction

We propose a remediation strategy leveraging the proposed
scores in Section V to increase downstream prediction model
performance on challenging, more safety-relevant scenarios.
Inspired by the difficulty-weighting of samples, as discussed
in [51], we utilize TrajScore(i)

AC for each agent i to
linearly weigh its contribution to a prediction model’s loss
function, out of the N total agents in a mini-batch:

WeightedLoss(i) =
1

N

N∑
i

Loss(i) ∗ Score(i)
AC (4)

Equation (4) is then applied after computing the loss
function for a given model, but before invoking the opti-
mization pass. This encourages the model to not treat all
scenarios and agents’ trajectories as equal and to care about
more safety-relevant situations. Next, because the future-
extrapolated score depends only on information available
in shist, we can incorporate TrajScore(i)

FE into a model
directly, to add a sense of counterfactual understanding to its
inductive biases. We encode this score for each agent i with
a simple multilayer perceptron. Then, we concatenate this
feature directly with the context encoding representation used
in each model (i.e., a function of trajectory histories, lane
embedding, etc.) before passing it to the model’s trajectory
decoding stage.

We also propose to incorporate a collision-aware loss
objective within each model. Many models in AD trajectory
forecasting produce multi-modal futures, where they output
K possible future modes for each agent, along with a scalar,
confidence value for each [27], [29], [31]. We add in a
cross-entropy (CE) loss objective upon these confidence
values, where the “correct” mode is the mode that minimizes
collisions with other agents’ ground truth futures. In the case
where a model already has a CE loss objective (e.g., to
minimize the distance to the agent’s ground truth future),
we linearly weigh the two target values according to a
regularization parameter.

VII. EXPERIMENTAL SETUP

Dataset: We utilize WOMD [5] as an exemplar dataset to
validate our approach, as it contains a particularly wide

variety of scenarios. This variety is highlighted in terms
of both geographic and roadway diversity, as well as scene
complexity and traffic density [52], [53]. We utilize a subset
from the publicly available training and validation sets from
WOMD, consisting of roughly 170k scenarios. We consider
our three different data splits (Section VI-A)—Uniform,
Clusters, Scoring—to create SID for training and
validation (roughly 135k scenes), and SOOD for testing
(roughly 35k scenes).
Baselines: We implement two representative baseline mod-
els to validate the efficacy of our distribution shift and
remediation strategies. First, we include MTR [27], which,
as of this writing, is the current top-performing model on
WOMD leaderboards. Second, we implement a version of A-
VRNN [24], where we utilize social pooling [30] instead of
a graph attention layer for the hidden state refinement. While
both models are designed to be “socially-aware,” neither
is explicitly structured to predict safe futures. We follow
the same training procedure performed by MTR, where the
models are trained for 30 epochs, and learning rate reduction
begins after epoch 20.

As a baseline remediation strategy, we implement the
Frenet-based domain normalization approach in [18]. This
approach converts all coordinates into a trajectory’s Frenet
frame, before passing the coordinates to a trajectory pre-
diction model. In order to obtain reasonable performance,
we use both the Cartesian and Frenet coordinates together
via concatenation, rather than replacing the former with
the latter. We then implement our proposed remediation
approach, described in Section VI-B for both models.
Metrics: To measure safety-criticality, we use collision rate
(CR), as the average number of collisions of each predicted
trajectory to the ground truth of the other agents, as in
[54], where collisions with the same external agent over
multiple timesteps only count once. We also utilize stan-
dard trajectory prediction metrics, as used in the WOMD
challenge, including Average Displacement Error (ADE) and
Final Displacement Error (FDE). These two metrics are
used in a best-of-K manner to report the mode with the
smallest distance to the ground-truth future, over all predicted
timesteps, and just the final predicted timestep, respectively.
Another important metric used is mean Average Precision
(mAP). This metric categorizes predicted modes into buckets
(e.g., straight, stationary, u-turn, etc.), and punishes mode
collapse for overlapping predictions.

VIII. RESULTS

A. Distribution Shift Results

In Figure 4, we highlight some examples of scenarios
identified in SID and SOOD for our Scoring method
described in Section V. The ID scenes contain both simple
scenes with few interactions, as well as moderately safety-
relevant scenes with lane changes and intersections. The
OOD scenes appear significantly more safety-relevant, with
more diverse maneuvers, such as u-turns, larger and more



Fig. 5: Qualitative examples of remediation approaches applied to MTR across two distinct scenarios. Trajectories progress
from the pink starting points.

dangerous intersections, and many more VRUs navigating
alongside vehicles.

Our quantitative results for the trajectory prediction experi-
ments are summarized in Table II. The metric values reported
are averaged over the three classes of vehicles, pedestrians,
and cyclists. The ∆val value in the final column indicates the
increase in collision rate in the OOD test value compared to
the ID validation value. In the Uniform split, as expected,
results between SID and SOOD are quite similar. For the
Clusters [18] split, we note that while a slight drop in
metric performance for ADE / FDE and mAP occurred, the
collision rate actually decreased from validation to test. We
suspect this is because the domains identified by this strategy
have no sense of safety-criticality, affirming the importance
of using such metrics when selecting scenes. Finally, our
Scoring strategy resulted in the largest increase in collision
rates between SID and SOOD, both in terms of absolute
value and percentage change. This increase occurs in both
the ground truth tracks, as well as in our tested methods,
more than doubling the in-distribution rates.

B. Robust Trajectory Prediction Results

We show our remediation experiment results in Table III.
Our proposed method was the most effective in reducing
collisions for the tested models, as shown by the ∆test

values. For MTR in particular, we observe the test collision
rates are lowered by 14%, while for A-VRNN, the rates
decrease by 6%. This resulted in an average decrease of 10%,
reducing the gap to the ground truth collision rate. However,
our method does result in a slight decrease in performance on
other metrics for MTR. This is likely because MTR has an
existing CE loss to select the best mode based on these other
metrics, meaning the collision loss objective is in contention
with its original objective.

Furthermore, the Frenet+ strategy [18] appeared ineffec-
tive in remediating the drop in performance on the Scoring
data split. We suspect this is due to the presence of more
object types than just vehicles; cyclists and pedestrians are
often not in lanes, so incorporating such lane information
may have been more harmful than beneficial. Additionally,
even for vehicles following well-defined lanes, the Frenet+



TABLE II: Distribution shift experiments in WOMD [5]. ADE / FDE is in meters. ∆val is the change in test collision rate
(CR) from the corresponding val CR. A more drastic increase is better.

Data Split Method Validation Set (In-Distribution) Testing Set (Out-of-Distribution)
ADE / FDE mAP CR ADE / FDE mAP CR (∆val)

Uniform
GT - / - - 0.008 - / - - 0.009 (+12.5%)
MTR [27] 0.73 / 1.58 0.30 0.062 0.73 / 1.59 0.31 0.061 (−1.60%)
A-VRNN [24] 1.80 / 4.63 0.06 0.057 1.82 / 4.67 0.06 0.058 (+1.80%)

Clusters [18]
GT - / - - 0.009 - / - - 0.007 (−22.2%)
MTR 0.69 / 1.50 0.35 0.060 0.71 / 1.55 0.33 0.051 (−15.0%)
A-VRNN 1.79 / 4.59 0.08 0.062 1.82 / 4.70 0.07 0.049 (−21.0%)

Scoring (Ours)
GT - / - - 0.005 - / - - 0.017 (+240%)
MTR 0.72 / 1.59 0.32 0.044 0.74 / 1.59 0.30 0.100 (+127%)
A-VRNN 1.99 / 5.26 0.05 0.042 2.13 / 5.55 0.05 0.099 (+136%)

GT: Ground truth tracks

TABLE III: Robust trajectory prediction experiments in WOMD [5]. ADE / FDE is in meters. ∆test is the change in test
CR from the un-remediated test CR for each method. A more drastic decrease is better.

Data Split Method Validation Set (In-Distribution) Testing Set (Out-of-Distribution)
ADE / FDE mAP CR ADE / FDE mAP CR (∆test)

Scoring (Ours)

GT - / - - 0.005 - / - - 0.017 ( - )

MTR 0.72 / 1.59 0.32 0.044 0.74 / 1.59 0.30 0.100 ( - )
MTR + F+ [18] 0.73 / 1.59 0.32 0.043 0.75 / 1.59 0.30 0.099 (−1.00%)
MTR + Ours 0.83 / 1.80 0.25 0.037 0.89 / 1.91 0.22 0.086 (−14.0%)

A-VRNN 1.99 / 5.26 0.05 0.042 2.13 / 5.55 0.05 0.099 ( - )
A-VRNN + F+ 2.05 / 5.24 0.06 0.041 2.23 / 5.73 0.06 0.103 (+4.04%)
A-VRNN + Ours 1.76 / 4.61 0.06 0.039 1.91 / 4.94 0.06 0.093 (−6.06%)

GT: Ground truth tracks, F+: Frenet+ Strategy [18]

strategy can still incur collisions, particularly at intersections
and unprotected turns.

To gain further insight into the benefits of both the
Frenet+ strategy and our remediation approach, we provide
qualitative examples in Figure 5 using MTR as the prediction
model. In these scenarios, the prediction with no remediation
results in future modes that collide with an external agent.
Meanwhile, the Frenet+ strategy is able to better stay in
lanes than the un-remediated approach but still results in
collisions. Finally, our remediation approach is able to avoid
collisions, while still providing reasonable mode diversity
and lane conformance.

C. Ablation Studies

As shown in Table IV, we performed a distribution shift
ablation study focusing on the five variations of our scoring
strategy discussed in Section V. We utilized MTR as it is the
best model according to traditional metrics. Our full method,
with asymmetric combined scoring, resulted in the largest
increase in collision rate, while still incurring a moderate
increase in the other metrics. This result confirms our hy-
pothesis from Section V-B that our counterfactual probing
technique indeed captures a fuller spectrum of safety-relevant
scenes.

We also performed an ablation study focusing on aspects
of our remediation strategy, as shown in Table V. While
the collision loss objective alone was quite effective, the
best performance was achieved utilizing our full approach,
incorporating the scores as part of the models’ inductive
biases and loss weights as well.

IX. CONCLUSION

Developing autonomous driving trajectory prediction mod-
els through real-world datasets, such as WOMD, is often
considered insufficient for ensuring robustness and safety.
While such datasets provide realistic recorded scenarios,
they rarely contain truly safety-relevant scenarios, falling
victim to the “curse-of-rarity.” Still, we proposed to further
characterize these datasets and find hidden safety-relevant
scenarios therein. We thus provided a versatile scenario
characterization approach to score scenarios by a hierarchical
combination of complementary individual and social fea-
tures. By performing a counterfactual probe, emulating how
a distracted agent may operate, we extended the spectrum of
safety-relevance to additionally find hidden risky scenarios,
without requiring unrealistic simulation or dangerous real-
world testing.



TABLE IV: Scoring strategy ablation study. Results are from using MTR [27] on WOMD [5]. ADE / FDE is in meters.
∆val is the change in test CR from val for the given method. The best distribution shift result is bolded.

Ablation Name Scoring Strategy Validation Set (In-Distribution) Testing Set (Out-of-Distribution)
GT FE AS ADE / FDE mAP CR ADE / FDE mAP CR (∆val)

Ground Truth ✓ - - 0.72 / 1.57 0.32 0.041 0.75 / 1.64 0.29 0.088 (+115%)
Future Extrapolated - ✓ - 0.73 / 1.61 0.33 0.046 0.72 / 1.55 0.31 0.097 (+111%)
Combined ✓ ✓ - 0.73 / 1.60 0.32 0.048 0.74 / 1.59 0.29 0.098 (+104%)
Asymmetric - ✓ ✓ 0.73 / 1.61 0.33 0.044 0.73 / 1.58 0.30 0.099 (+125%)
Asymmetric Combined ✓ ✓ ✓ 0.72 / 1.59 0.32 0.044 0.74 / 1.59 0.30 0.100 (+127%)

GT: Ground truth, FE: Future extrapolated, AS: Asymmetric scoring.

TABLE V: Remediation strategy ablation study based on our proposed approach in Section VI-B utilizing MTR [27] on
WOMD [5]. ADE / FDE is in meters. ∆test is the change in test CR from the un-remediated MTR test CR.

Ablation Name Remediation Validation Set (In-Distribution) Testing Set (Out-of-Distribution)
SC CL ADE / FDE mAP CR ADE / FDE mAP CR (∆test)

MTR [27] - - 0.72 / 1.59 0.32 0.044 0.74 / 1.59 0.30 0.100 ( - )
MTR + Ours (SC only) ✓ - 0.74 / 1.63 0.31 0.046 0.74 / 1.61 0.29 0.103 (+3.00%)
MTR + Ours (CL only) - ✓ 0.81 / 1.77 0.27 0.038 0.88 / 1.92 0.23 0.093 (−7.00%)
MTR + Ours (Full) ✓ ✓ 0.83 / 1.80 0.25 0.037 0.89 / 1.91 0.22 0.086 (−14.0%)

SC: Score incorporation, CL: Collision loss objective.

Under a distribution shift setting where the most safety-
relevant scenes were held out as out-of-distribution, we
demonstrated that both ground truth, as well as our evaluated
trajectory prediction models, incurred a significant increase
in collision rates. We further contributed a remediation
strategy, achieving a 10% average reduction in prediction
collision rates.

Although our remediation strategy proved successful in
reducing the test collision rate, the drop in performance was
not remediated completely. Incorporating test-time refine-
ment and collaborative sampling techniques, as highlighted
in contemporaneous work, could prove a fruitful direction
in improving this strategy further [4]. Another interesting
future direction of this work would be to utilize our scor-
ing strategy to assess safety-critical scenarios generated in
simulation along the axes of realism, frequency, and type
of safety-relevance created. Overall, we argue that trajectory
prediction datasets can still be utilized in assessing safety in
autonomous driving, and encourage future work to further
this direction.
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