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Abstract—Transfer learning is an increasingly common
approach for developing performant RL agents. However,
it is not well understood how to define the relationship be-
tween the source and target tasks, and how this relationship
contributes to successful transfer. We present an algorithm
called Structural Similarity for Two MDPS, or SS2, that
calculates a state similarity measure for states in two finite
MDPs based on previously developed bisimulation metrics,
and show that the measure satisfies properties of a distance
metric. Then, through empirical results with GridWorld
navigation tasks, we provide evidence that the distance
measure can be used to improve transfer performance for
Q-Learning agents over previous implementations.

Index Terms—task similarity, bisimulation, reinforce-
ment learning, transfer learning

I. INTRODUCTION

The last decade has seen impressive results in rein-
forcement learning (RL), particularly for deep reinforce-
ment learning (DRL) [12, 14, 24]. However, many of
these algorithms tend to be computationally expensive
and produce policies that are brittle to shifts in their
deployment distributions. One potential solution to both
of these problems is to leverage transfer learning [5, 15,
29], i.e., using previously trained policies to jumpstart
learning in a new task, or by developing curricula [3,
13] of tasks to facilitate the learning of advanced skills
or behaviors.

To best leverage transfer, the task being transferred
from should be similar to the task being transferred
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to. Yet what makes one task similar to another in
RL, aside from good transfer [20, 25], is currently not
well understood, nor how to exploit such similarity to
facilitate transfer learning.

In this work, we propose a new approach, based on
[26] and [18], to estimate state and action similarities
between two tasks (where each task is considered to be
a Markov Decision Process, or MDP), and then leverage
those similarities for knowledge transfer in Q-learning.
We show that our approach, referred to as Structural
Similarity for Two MDPs or SS2, satisfies the properties
of a similarity metric, compare SS2-based knowledge
transfer to prior methods [18], and propose ways in
which the prior methods can be augmented by SS2. We
assess task similarity and knowledge transfer on a set of
gridworld RL tasks, and show that the SS2-augmented
methods outperform all other tested methods.

We also discuss some observations regarding task
distances such as those proposed by [18], limitations
of our proposed algorithms, and possible future work.
Notably, reducing a set of state similarities into a single
value for task similarity, as done in [18] using the
Hausdorff and Kantorovich distances, did not correlate
well with transfer in our experiments.

II. RELATED WORK

Task similarity measures tend to fall into two cate-
gories: model-based and performance-based [25].

Model-based metrics tend to focus on similarities in
the structures of the MDPs, e.g. bisimulation metrics
[9]. Song et al. [18] introduced a metric d′ that extends
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this bisimulation metric to compare similarity between
separate MDPs [18], but their metric requires that two
MDPs be homogeneous, i.e., having equivalent state
representations, a one-to-one correspondence between
action spaces, and by satisfying a condition they refer to
as reward-linked. Their metric iteratively builds a matrix
of distances between states by adding the magnitude of
the difference of expected rewards of actions between
states and the Kantorovich distance, or earth mover’s
distance (EMD), between the probability distributions
of the corresponding actions between the two states.
They then propose algorithms that leverage d′ to transfer
knowledge from a Q function learned from one task to
initialize a Q table for another task to accelerate learning.
The Q table of the new task is initialized either with
Q values from similar states in the trained task (what
the authors refer to as the “state method”), or with a
sum of Q values from similar states weighted by their
similarity as computed using d′ (the “weight method”).
For simplicity, we instead refer to these algorithms as
T-STATE and T-AVG, respectfully. We discuss these
algorithms in more detail in Section VI.

Wang et. al. [26] proposed a similar solution to quan-
tify the similarities between states and actions within a
single MDP by utilizing the Hausdorff distance between
out-neighbors of states and the EMD between out-
neighbors of actions in a bipartite MDP graph. Their
solution generates two matrices of similarities, one for
state similarities and one for action similarities, but for
states and actions within a single MDP.

In [28], Zhang et al. also utilized a bisimulation
metric in order to disassociate task-irrelevant information
between observations within MuJoCo [22] tasks and
high-fidelity highway driving tasks using CARLA, an
open urban driving simulator [8].

Performance-based metrics, on the other hand, aim to
find similarities based on transfer performance between
tasks. Carrol et. al. [5] proposes a task library system as
a part of the lifelong learning [21] paradigm that allows
an agent to improve its learning ability as it is exposed
to successive tasks through task localization, similarity
discovery, and task transfer. They propose multiple task
similarity measures: similarity based on rewards, similar-
ity based on number of states with identical policy, mean
square error between Q-values, and mean squared error
between rewards (R values). Castro et. al. [6] expanded
upon the preexisting bisimulation metrics by creating
two metrics that are less computationally intensive,
with one having guaranteed convergence and the other
being able to learn an approximation for continuous

state MDPs. However, these require an actively learning
policy to operate on the MDP in order to compute
their measures, therefore we categorize it here. Other
examples in this vein include [11] and [7].

Some methods additionally include the learning of the
metric itself. Works such as [1] and [17] propose metrics
that require training models to extract useful information
on source and target tasks. Serrano et. al.’s method
performs operations on Q tables of source and target
tasks, while Ammar et. al.’s method utilizes restricted
Boltzmann machines on the source and target tasks,
allowing a modelling of the behavioural dynamics of the
two MDPs to be used as a similarity measure on tasks
within the domain the measure was trained on.

III. PRELIMINARIES

A. MDPs and MDP Graphs

In this work we primarily follow the definitions and
notation from Wang et. al. [26], so we define an MDP
as M = (S,A, P,R), where S is a finite set of states,
A is a finite set of actions, P : S × A × S −→ [0, 1]
is the transition function providing the probabilities of
an agent going to a state s′ ∈ S given it is currently in
state s ∈ S and took action a ∈ A, and finally, R : S ×
A×S −→ [0, 1] is the reward function for taking action
a while in state s and transitioning to s′. We note that,
while common definitions of MDPs include a discount
factor, usually denoted γ, as with the Song and Wang
approaches, we do not make explicit use of this value.
The same can be said for the initial agent state s0 ∈ S.

We define the MDP graph of an MDP
M = (S,A, P,R) as GM = (V,Λ, E,Ψ, p, r). GM is a
heterogeneous directed bipartite graph with two types of
nodes, state nodes and action nodes. V denotes the set
of state nodes, and Λ denotes the set of action nodes. E
is the set of decision edges from state nodes to action
nodes, and Ψ is the set of transition nodes from action
nodes to state nodes. Transition edges are weighted by
the transition probabilities p and by rewards r. Note
that there is a one-to-one correspondence between an
MDP and its constructed graph as described above. For
more details and facts about constructing an MDP graph
from an MDP, see [26], as well as our experiment
methodology in Section VI.

B. Reinforcement Learning and Transfer

The aim of reinforcement learning is to find an optimal
policy π∗ for a given MDP M , utilizing the information
gained by interacting with the MDP, particularly by
discovering rewards in the MDP and maximizing them.
Again following notation from [18], given an MDP M =
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(S,A, P,R), we define a policy π : S×A −→ [0, 1] as a
mapping from state, action pairs to reward values in the
interval [0, 1]. The optimal policy can be characterized
as

π∗ = argmax
π

Eπ

[ ∞∑
t=0

γtrt|s0 = s

]
= V π(s)

where γ is a discount factor, rt is the reward at time
t, and s0 is the starting state of M (γ and s0 are often
included in the definition of the MDP, but in this case
we omit them). V π : S −→ R is called the value
function of the policy π, and is the expected cumulative
reward of following π from state s onward. Deviating
slightly in notation, we say P (s, a, s′) is the probability
of transitioning from state s to state s′ given that agent
takes action a.

IV. STRUCTURAL SIMILARITY FOR TWO MDPS
(SS2)

We define our distance between two given MDPs
mostly following the recursion given in [26]’s implemen-
tation, which we will call SS1 for the remainder of this
section, but with some notable differences. We construct
a similarity matrix from an MDP graph composed of
two disconnected components, each component being
the MDP graph of the respective MDP. We also impose
some additional restrictions on the initial conditions of
SS1’s recursion, and then use only a submatrix of the
final similarity matrix for the final distance measure;
doing so allows us to establish properties of that sub-
matrix that are desirable, as shown in [26]. In Section V
we provide a simplification of this algorithm wherein we
can compute the sub-matrix directly. For the remainder
of this work, we will refer to this metric as Structural
Similarity for two MDPs1, or SS2, for short.

A. Foundation

Let M = (SM , AM , PM , RM ) and N =
(SN , AN , PN , RN ) be two MDPs. We represent both as
MDP graphs GM = (VM ,ΛM , EM ,ΨM , pM , rM ) and
GN = (V N ,ΛN , EN ,ΨN , pN , rN ) as established for
SS12. Then, let G = GM t GN = (V,Λ, E,Ψ, p, r)
be the disjoint union of the two graph MDPs. This

1In theory, this could be extended to more than two MDPs, but we
only consider two in this work.

2It is worth noting here that while the action space is a finite size,
say σ, each action available to the agent at each state is its own unique
node. So if all σ actions are available to the agent at each state, there
would be σ · |S| total action nodes.

represents a situation where there are two sets of states,
VM and V N , such that if one starts in one set, there are
no sets of actions such that one can land in a state in
the other set. We desire to establish the state and action
distance measures:

δŜ(u, v) := 1− σŜ(u, v) ∀u, v ∈ V (1)

δÂ(u, v) := 1− σÂ(α, β) ∀α, β ∈ Λ (2)

where σŜ and σÂ are the state and action similari-
ties for state space Ŝ = SM ∪ SN and action space
Â = AM ∪AN , respectfully. In practice, these functions
will be defined as matrices, i.e. σS(u, v) = S[uidx, vidx],
where S is a matrix, uidx and vidx denote the row and
column of S representing u and v, respectively, and
S[i, j] is the (i, j)th entry of S. For G as defined above,
we see that σŜ = SG takes on a useful form.

Let SM and SN be similarity matrices for the states of
M and N respectively. Let SM,N (respectively, SN,M )
be the similarity matrix between the two MDPs with
rows corresponding to the states of M and the columns
the states of N (respectively, rows corresponding to
states of N and columns corresponding to states of
M ). Similarly we define matrices AM , AN , AM,N and
AN,M with rows and columns corresponding to states in
M and states in N as appropriate. Then one may write
the comparison matrix of G as follows:

SG =

[
SM SM,N

SN,M SN

]
; AG =

[
AM AM,N

AN,M AN

]
It is worth noting here that the sub-matrix SM,N

represents the distances between the state nodes of the
MDP graph of M and MDP graph of N, and similarly
with AM,N and the action nodes in each MDP graph.
Thus, the real final product we are truly interested in
is SM,N , but for now we consider the computation of
SG in order to leverage results from SS1 and make the
argument that SG is, in fact, a distance metric for MDP
states.

B. Base Cases

For u, v ∈ SG, we set the similarity of a node to
itself as 1. Similarly, two absorbing nodes are maximally
similar, while absorbing and non-absorbing nodes are as
dissimilar as possible. In other words, let SG,tu,v denote

3



the (u, v)th entry of the similarity matrix for graph G at
time step t, then

SG,0u,v =


1 u = v

ω Nu = Nv = ∅
0 Nu = ∅ xor Nv = ∅
duv ∈ [0, 1] u 6= v

where ω ∈ (0, 1] denotes the maximal similarity value
assigned to any two different states. For example, if
two states are exactly the same but are in two different
connected components of the graph, their similarity
would be ω.

As with SS1, we allow freedom in the initialization
of similarity between non-absorbing pairs; however, we
also impose one additional requirement. We insist that
SG be initialized such that the entries in the matrix
1−SG,0 define a distance function on the nodes. Namely,
we insist that duv = dvu and that for all triples u, v, w ∈
SG,

(
1−SG,0u,v

)
+
(
1−SG,0v,w

)
≥
(
1−SG,0u,w

)
. We impose

these constraints in order to ensure convergence of the
recursion and to ensure S and A represent distances
(more details are provided in the proof of Theorem IV.1).
We follow the same procedure for AG.

C. Distance equations

In this section we restate the distance functions
on which SS1 and our recursion algorithms depend.
Namely, a reward distance δrwd, the Hausdorff distance
δHaus, and the earth mover’s distance δEMD. Let Nx,
for x ∈ VM ∪ΛM ∪V N ∪ΛM , denote the out neighbors
of x, then, for action node α and another set of action
nodes N , define δA(α,N) := minβ∈N δA(α, β). The
previously listed distance equations are then defined as
follows:

δrwd = |E[rα]− E[rβ ]| (3)

δHaus(u, v; δA) = max
α∈Nu
β∈Nv

{δA(α,Nv), δA(β,Nu)}
(4)

δEMD(pα, pβ ; δS) = min
F

∑
u∈Nα

∑
v∈Nβ

fu,vδS(α, β)

s.t. ∀u, v ∈ V : fu,v ≥ 0,

∀u ∈ V :
∑
v∈V

fu,v = p(α, u),

∀v ∈ V :
∑
u∈V

fu,v = p(β, v).

(5)
With this distance functions defined, we can restate

the equations used in SS1’s recursion. Choose values

CS , CA ∈ (0, 1), where CS can be thought of as an upper
bound on state similarities given their action similarities
are equal, and CA can be thought of as a weighting
factor between between magnitudes of contribution of
reward differences and state transition differences to final
distance between actions. The state updates are given by
the following equations:

SG,iu,v = CS(1− δHaus(u, v; 1−AG,i−1)) (6)

and

AG,i
α,β = 1− (1− CA)δrwd(α, β)

− CAδEMD(α, β; 1− SG,i−1).
(7)

D. Algorithm

Combining definitions from previous sections, we are
able to state our algorithm for determining inter-state
distances as Algorithm 1. While we do not specify any
specific convergence criteria, it is worth noting that the
exact results produced Algorithm 1 will vary based on
the criteria chosen. However, iterating the name number
of times produces consistent results.

The algorithm requires as input the specification of the
graph MDP (V,Λ, E,Ψ, p, r), values for CS , CA, and
the initialized values of SG, AG as previously described.
For the remainder of this document, we assume the value
of ω for each SG,0, AG,0 is set to CS . Initializing SG and
AG this way ensures convergence to a unique solution
as shown in the proof of Lemma IV.1 and the following
Corollary.

This choice of ω is further justified by considering the
output of the Hausdorff distance when the nodes in the
input have no out-neighbors. This results in the distance
between nodes in two empty sets, which in theory, is
trivially 0. Therefore, the outcome of Equation 6 will
always be CS . A similar argument can be made for the
case where only one set is non-empty, in which case
the Hausdorff distance is theoretically infinity, or in our
case, the max distance of 1, which results in Equation 6
being 0.

Finally, we emphasize that the range of the reward
function must be constrained to be within [0, 1]. For
tasks where this is not the default reward scheme, the
reward function can simply be normalized to fit into this
interval for the purpose of this similarity (or distance)
computation.

E. Comparison with Original Algorithm

Before proceeding, we make a few remarks on Algo-
rithm 1, in particular on how it differs from SS1.
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Algorithm 1 Structural Similarity for two MDPs (SS2)
Require: Graph MDP = (V,Λ, E,Ψ, p, r)
Require: Cs, Ca ∈ (0, 1), SG,0, AG,0

Ensure: (1− SG,0u,v ) + (1− SG,0v,w) ≥ (1− SG,0u,w);
∀u, v, w ∈ V

Ensure: (1−AG,0
u,v ) + (1−AG,0

v,w) ≥ (1−AG,0
u,w);

∀u, v, w ∈ V
1: repeat
2: for all α ∈ Nu, β ∈ Nv: u, v ∈ V ; u 6= v do
3: AG,i

α,β ← 1− (1− CA)δrwd(α, β)

− CAδEMD(α, β; 1− SG,i−1)
4: end for
5: for all u, v ∈ V ; Nu 6= ∅; Nv 6= ∅ do
6: SG,iu,v ← CS(1− δHaus(u, v; 1−AG))
7: end for
8: until SG and AG converge
9: return (SG,∗,AG,∗)
{SG,∗ = state similarity matrix, AG,∗ = action
similarity matrix}

In Algorithm 1 we insist that the matrices AG,0 and
SG,0 are initialized such that 1 − AG,0 and 1 − SG,0

are both distances. This is because, in the iterative step,
the entries of AG,i and SG,i are defined by distance
functions that take as an input the distance matrix 1 −
AG,i−1 or 1 − SG,i−1. In other words, if 1 − AG,i−1

and 1 − SG,i−1 distances, then both 1 −AG,i and 1 −
SG,i are guaranteed to be distances. This is obvious for
1−AG,i. It remains to check that if 1−SG,i−1 defines
a distance on the non-absorbing nodes, then this extends
to a distance on all nodes in SG. For this, we need only
check the triangle inequality. Let ◦ indicate an absorbing
node and ∗ a non-absorbing node. The triangle inequality
can be seen from the following diagrams

∗ __
1

��
◦ oo

0
//��

1

??

◦

and ◦ __
1

��
∗ oo

SG,i−1
∗,∗

//��

1

??

∗

along with the fact that 0 ≤ SG,i−1∗,∗ ≤ 1. This bounded-
ness comes from the fact that δrwd, δEMD, and δHaus
are bounded between 0 and 1, as are the constants CA
and CS , due to the fact that rewards are constrained to
values between 0 and 1. Thus we may conclude that
1−AG,i and 1− SG,i are distances.

We are unsure why these conditions were not specified
for SS1. The examples the authors provided in their
work satisfy these conditions, but in general they do not
enforce it.

SS1 also does not specify the value of duv in the
case where neither u or v is an absorbing node. It
claims, however, that the entries of AG,i and SG,i are
monotonically increasing. This is not true for all values
of du,v . In our algorithm, we universally insist that
du,v = 0 in the case where neither u or v is an absorbing
node. The rationale for this is given in the proof of
Lemma IV.1.

F. Properties of SG and AG

In general we claim that the matrices SG and AG

have the same properties as σS∗ and σA∗ in SS1, and
substantiate those claims here. First we clarify the claim
in [26] that the sequences {AG,i

a,b }i∈N and {SG,iu,v}i∈N are
monotonically increasing for all a, b ∈ Λ and u, v ∈ V .

Lemma IV.1. There exists an initial matrix SG,0 such
that the matrices AG,i and SG,i are monotonically
increasing.

Proof. Note that 1 − AG,i
α,β is a weighted average of a

fixed reward value and the earth mover’s distance of the
transition probabilities of α and β. Then 1−SG,iu,v is just
the lowest highest value for some set of these weighted
sums. If the entries of 1−AG,i

α,β are less than the entries
of 1−AG,i−1

α,β , then the same can be said for the entries of
1−SG,iu,v . Furthermore, as the transition probabilities are
fixed, the entries of 1 − AG,i

α,β are less than the entries
of 1 − AG,i−1

α,β if and only if the entries of 1 − SG,iu,v

are smaller than those of 1 − SG,i−1u,v . Therefore, it is
imperative all entries of 1−SG,0u,v exceed all entries of 1−
SG,1u,v . While there are non-trivial assignments that will
satisfy this for any given graph G, this can be universally
assured by setting du,v = 0.

Corollary IV.2. With the correct initial conditions, the
entries of these matrices are guaranteed to converge.

Proof. This is a comes directly from monotonicity and
the boundedness of these values

Theorem IV.3. Algorithm 1 defines a distance function
on the state nodes of two graph MDPs, and a pseudo-
metric on the corresponding action nodes.

Proof. As Theorem 2 of SS1 does not specify that the
graph must be connected. Therefore, the proof holds for
this disconnected case at hand.

The only case that needs to be understood here is what
happens if the graph G = GM tGN is the disjoint union
of two identical graphs (GM ' GN ). In this case, one
initializes SG,0 to be the identity matrix. Then for the
corresponding isomorphic actions αM and αN in the
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components GM and GN respectively, AG,1
αM ,αN = 1.

This is because the rewards and the transition proba-
bilities are identical for these two functions. Therefore,
if vM and vN are the source nodes for these actions,
respectively, SG,1vM ,vN = CS . By similar argument, we see
that these values do not change for any i. Therefore, the
value CS denotes the discount one puts on two different
states being isomorphic but distinct.

V. ALGORITHM SIMPLIFICATION

In the previous section we show that the matrix 1−SG
is a distance metric for two disconnected components
GM ' GN = G, so the submatrix SM,N is a distance
metric between the states in MDP M and MDP N , of
which we are chiefly interested. In fact, we need not
compute all of SG in order to obtain SM,N , we can
simply compute it directly by only considering u ∈ VM
and v ∈ VN in both for loops. In this case, we
initialize SM,N and AM,N (SG’s and AG’s respective
replacements in algorithm 1) as CS · I, where I is the
identity matrix.

This is justified by examining the data dependencies
of each Hausdorff (as used to compute entries in SG)
and Kantorovich (as used to compute entries in AG)
operation. In the former, note that while the entirety of
the AG matrix is passed in as the distance function,
only the subset of that matrix where the rows are the
actions of state u and columns are the actions of state v
is actually used in computing the entry at SGu,v . That is
to say, computing the state similarity within each sub-
matrix only relies on the action similarities of actions
belonging to states within that sub-matrix.

Furthermore, these entries in AG rely on the Kan-
torovich distances between the action α and β from
u and v respectively. When expanding α into a full
probability distribution, note that the probability of tran-
sitioning from MDP M to N (or vice versa) via any
action is 0. Thus, those entries in the distribution have 0
weight associated with them, and are disregarded when
computing the overall distance. Thus, only the weights
in AG corresponding to the sub-matrix in which u and v
belong to have any bearing on the computation, and each
sub-matrix can therefore be computed independently.

Regarding run-time, the big-O complexity of SS1
still holds for this simplification, as it still scales with
the number of nodes in the set of state nodes and
action nodes in the graph MDP; however, the memory
and computation reduction from reducing the SG ma-
trix (|SM + SN |2 entries) to SM,N (|SM ||SN | entries)
can be significant in practice. In essence the complex-
ity has changed from O(Niter · |S|2|A|2K2

max/ε
2) to

Fig. 1. An example maze used in the transfer experiments. The agent
begins in the upper-left red state and must navigate to the lower-right
green state.

O(Niter · |SM ||SN ||A|2K2
max/ε

2), where |SM | < |S|
and |SN | < |S|, where Niter is the number of iterations
the algorithms runs before converging and Kmax ≤ |V |
is the maximum out-degree of action nodes in G.

VI. EXPERIMENT METHODOLOGY

We validate SS2 by conducting several experiments
wherein we assess the relationship between its similarity
measurements and transfer performance. In general, our
setting consists of finite MDPs representing various
gridworld environments (Figure 1). In each experiment,
we consider a given target environment and a corpus of
source environments, each environment consisting of a
single start state and single goal state. We then utilize
table-based Q Learning to train an agent to 90% opti-
mal performance, as measured by the moving average
of number of steps required to complete an episode
compared against the optimal path length [27]. Finally,
we use the transfer methods proposed and assessed in
[18], as well as a novel expansion of those methods that
utilizes the action similarities (AG,∗) captured by SS2,
and assess the performance of each source environment
to the fixed target environment.

A. Environment Generation

We define our tasks by randomly generating a target
environment and 100 source environments. The goal
of the task is to navigate the environment from the
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top leftmost square to the bottom rightmost square,
at which point the agent is given a positive reward.
Each environment generated is populated with randomly
distributed obstacles, but ensures that there exists at
least one path to the goal. Additionally, we repeat this
generation process while modifying three independent
variables to better understand how different conditions
affect performance. These variables, and their associated
settings, are as follows:

1) Grid size: either “Small” (9x9) or “Large” (13x13)
2) Rotations: whether or not to include random rota-

tions when generating the source tasks. If included,
then for each source task the goal state is chosen
to be one of four random corners, with the start
state set to the opposite corner along the diagonal.

3) Reward: either 1 or 100, associated with the goal
state. All other states have no rewards or costs
associated.

This results in a total of eight experimental conditions,
each with their own target task and set of 100 source
tasks. Additionally, note that in these transfer exper-
iments, the MDPs generated are deterministic, unless
otherwise specified.

B. Agent Training

We use a simple version of Q-Learning [27, 23]
when training the initial source agents. We first set an
optimality criterion by performing a breadth-first search
from the environment’s start state to goal state, where
there is unit cost in moving to an adjacent state. We
then use a learning rate α = 0.1, discount factor γ = 0.9,
and an ε-greedy strategy starting at ε = 0.9 to train each
agent until the moving average of its last 20 episodes
has reached 90% optimal. We utilize a simple form
of simulated annealing by decreasing the ε value by a
constant decay amount of 10−6, with a minimum value
of 0.1. The agents tend to converge after approximately
5× 105 steps.

C. Transfer Methodology

We consider metric-method pairs in a factorial design.
In these experiments, we utilize SS2, as well as the
similarity metric, d′, defined by Song et al. in [18] as
a point of comparison, as it is similar to ours. Song’s
similarity metric is also computed recursively, following
Equation 8.

d′(s, s′) = max
a∈A
|E[ras ]− E[r′as ]| − CδEMD(P as , P

′a
s ; d′)

(8)

Algorithm 2 Weight Transfer with Action
(T-AVG-ACT)
Require: δŜ , δÂ
Require: Qin ∈ R|Sin|×|Ain|
Require: Nu = Nv , ∀u, v ∈ Sin × Sout

1: Qout ← 0|Sout|×|Aout

2: K ← EMD(U|Sin , U|Sout|, δŜ)
3: for all si ∈ Sin, so ∈ Sout do
4: w ← K[si, so]/(

∑
s′o∈Sout

K[si, s
′
o])

5: Asub ← δÂ[Nsi , Nso ]
6: for all ao ∈ Nso do
7: am ← argminAsub[:, ao]
8: if Asub[ao, ao] = Asub[am, ao] then
9: a← ao

10: else
11: a← am
12: end if
13: Qout[so, ao]← w ×Qin[si, a]
14: end for
15: end for
16: return Qout

TABLE I
ANOVA RESULTS. REPORTED P-VALUES ARE BONFERRONI

CORRECTED; REWARD IS OMITTED AS ITS P-VALUE WAS 1.0000 IN
ALL CASES.

Dimension P-Value Rotate P-Value
Algorithm
SS2, T-STATE-ACT 4.9812e-02 1.0000e+00
SS2, T-AVG-ACT 3.9507e-30 1.0000e+00
SS2, T-STATE 1.1683e-30 1.2733e-22
SS2, T-AVG 1.2963e-48 6.3088e-01
Song, T-STATE 3.8663e-23 3.1010e-44
Song, T-AVG 2.1109e-63 3.6490e-01
Uniform, T-STATE 8.9806e-07 3.7355e-45
Uniform, T-AVG 1.0000e+00 5.6624e-73

In Equation 8, E[ras ] is the expected reward for taking ac-
tion a at state s, P as is the transition probability distribu-
tion for taking action a at state s, and C is a user defined
constant. We also include a baseline Uniform metric
which returns a constant distance from each source state
to target state. For fairness of comparison, we ensure that
the convergence criteria for each metric is identical, as
both our metric and Song’s utilize fixed point iterations
to determine when the matrices have stopped changing.
This criterion is satisfied when all pairwise comparisons
between the previous iteration’s distance values d and
current iteration’s distance values d′ meet the following
condition: |d′ − d| ≤ 10−8 + 10−5 × |d|.

Similarly, we ensure that constants that are common
to both algorithms (i.e. Song’s analogue of CA) have
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Algorithm 3 State Transfer with Action
(T-STATE-ACT)
Require: δŜ , δÂ
Require: Qin ∈ R|Sin|×|Ain|
Require: Nu = Nv , ∀u, v ∈ Sin × Sout

1: Qout ← 0|Sout|×|Aout

2: for all si ∈ Sin, so ∈ Sout do
3: if δŜ [si, so] = min δŜ [:, so] then
4: w ← 1
5: else
6: w ← 0
7: end if
8: Asub ← δÂ[Nsi , Nso ]
9: for all ao ∈ Nso do

10: am ← argminAsub[:, ao]
11: if Asub[ao, ao] = Asub[am, ao] then
12: a← ao
13: else
14: a← am
15: end if
16: Qout[so, ao]← w ×Qin[si, a]
17: end for
18: end for
19: return Qout

the same value. In this case, we set CA = 0.5. We
also initialize CS = 0.9995, but note that d′ has no
corresponding constant.

We use methods described in Song’s work, namely
Weight and State transfer [18] to transfer agent
knowledge from one task for use in another. The
Weight transfer method (not to be confused with neural
network weights) initializes the Q function, or value
function, of the target task by using the values of the Q-
function (or value function) in the source task(s). Each
contribution is weighed by the corresponding entry of the
optimal transport matrix computed by the Kantorovich
metric upon the State-State distance matrix. As stated
in I, we refer to this method as T-AVG. The State
transfer, which we will henceforth refer to as T-STATE
is similar, but simply sets the Q-function (or value func-
tion) for each state by selecting the entry of the source
task corresponding to the state that is least distant to the
target state. That is, only the most similar source state
to each target state will contribute to its initialization.

We then extend these methods by using the action sim-
ilarity matrix, (AG) to better inform mappings between
actions in each source-target state pair, as described in
Algorithm 2 (T-AVG-ACT). In performing each transfer

experiment, we utilize the specified metric to obtain
a distance matrix δŜ between states in each source
environment and the fixed target environment, as well
as a corresponding distance matrix δÂ between actions.

Intuitively then, Algorithm 2 can be seen as assigning
the minimally distant source action to each target action,
breaking ties by the original action ordering alignment.
Note that this action-space correspondence precondition
is required by Song’s metric, but we are only using it as
a heuristic to break ties. Algorithm 3 (T-STATE-ACT)
is quite similar, except it weighs only the least distant
State-State pair, similar to T-STATE.

Finally, we then use each of the transfer methods to
initialize the Q table for the target environment. Note that
while all four methods can support transferring informa-
tion from multiple source tasks to a single target task,
we only consider the one-to-one case in this experiment.
We train the resulting agents for 103 steps, with a fixed ε
value of 0.1 (other hyper-parameters are held the same as
when training the source tasks). We repeat this procedure
for 50 trials, to reduce variance that results from ε-greedy
exploration, and store each resulting performance curve.

Note that the transfer variants that use the action
similarity matrix are only applicable to our algorithm,
since d′ only computes state similarity. This results in a
total of eight metric-method combinations.

VII. RESULTS

A. Transfer Performance

We begin by calculating the Average Episodes
Completed across the 50 trials for each (source,
metric-method, experiment) tuple, which is simply the
mean number of episodes the agents were able to com-
plete in a chosen measurement period (in our case,
the first 2500 steps of training). This enables us to
compute an Episode Performance which is the
average number of steps per episode observed (i.e. 2500
/ Average Episodes Completed). We then cal-
culate a Relative Performance by comparing this
Episode Performance to the optimal step count
in the target environment, via Optimal Length /
Episode Performance, and converting to a per-
centage by multiplying by 100.

We conduct an Analysis of Variance (ANOVA) test for
each of the three independent factors used in creating the
environments [19]. In these tests, the dependent variable
was the Relative Performance. The Bonferroni
corrected p-values can be seen in Table I [4]. As
shown, for most metric-method pairs, both grid size
(Dimension) and the presence of rotations (Rotate)
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Fig. 2. Distributions of agent performance over all source tasks,
averaged over 50 trials. The x-axis represents the average number of
episodes completed by an agent in the first 2500 steps of training
divided by the number of episodes completed by an optimal agent in
the same number of steps, which we call Relative Performance.
In essence, farther right indicates closer to optimal performance.

were statistically significant in affecting transfer perfor-
mance, while the reward amount (Reward) was not
significant for any pair. Thus, in the remainder of our
analyses and visualizations, we focus only on grid size
and presence of rotations, using the results in the re-
ward = 100 experiments to most directly compare with
T-AVG and T-STATE.

The full results consisting of the mean and stan-
dard deviations for each metric-method in each exper-
iment can be seen in Table II. Interestingly, across
all conditions for SS2, T-STATE-ACT dominated
T-AVG-ACT and T-STATE dominated T-AVG. How-
ever, for Uniform and d′ similarities, T-AVG transfer
dominated T-STATE transfer.

We thus choose to highlight these four metric-method

pairs, as they are the best methods for each metric:
1) SS2 Metric, T-STATE-ACT Transfer
2) SS2 Metric, T-STATE Transfer
3) d′ Metric, T-AVG Transfer
4) Uniform Metric, T-AVG Transfer
These results are highlighted in Figures 2 and 3.

Figure 2 highlights the percent of optimal performance
able to be achieved in the first 2500 iterations, as a
density plot over the 100 source tasks. Figure 3 displays
the cumulative number of episodes completed over time,
averaged over the 100 source tasks. Overall we observe
that SS2, with both the T-STATE-ACT and T-STATE
transfer methods, significantly outperforms d′, both in
terms of consistency across the source tasks as well as
transfer performance attained. We suspect that this is due
to the action distances effectively allowing our algorithm
to leverage states which are similar despite their out-
actions being misaligned (e.g. states that are one move
away from the goal should be similar even if the action
to perform that move is different).

VIII. DISCUSSION

A. Structural Similarity; MDP Distance

Ideally, we would want a single value to characterize
the overall similarity between two MDPs, a straightfor-
ward way to do this is as follows:

Using Algorithm 1 or a simplified version, assume
we may now compute the function δŜ = 1− σŜ = 1−
σSM∪SN = 1−SG,∗, for MDPs M = (SM , A, PM , RM )
and N = (SN , A, PN , RN ). We analogously define
δÂ = 1−AG,∗. We may now apply the measures used
in [18] to compute a final similarity measure between
the MDPs, i.e. the Hausdorff and Kantorovich metrics.
Assuming M , N and S defined as stated previously, we
state the following definitions:

Definition VIII.1. The Hausdorff structural similarity
distance, Φ, of M and N is defined as

Φ(M,N) = δHaus(VM , VN , δŜ),

where VM and VN are the state nodes of the MDP graphs
for M and N , respectively.

Definition VIII.2. The Kantorovich structural similarity
distance, Ψ, is defined as

Ψ(M,N) = δEMD(U|SM |, U|SN |, δŜ),

where Ua is a discrete Uniform distribution with p = 1
a .

We tested these measures using the Q-learning frame-
work we used for VI, but we did not find correlation
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Fig. 3. Performance curves of best transfer methods for each metric over time. Data points are averaged over 50 trials and 100 source tasks.

between transfer performance and MDP distances (for
more details, see Appendix A. However, because the
state distances computed using SS2 seem to be useful
in terms of improving transfer from one task to another,
we believe the issue is in the reduction technique, i.e.
the use of the Kantorovich and Hausdorff distances.
Discovering other techniques to reduce the information
from SG,∗ into a single value may be a possible avenue
of future research, but another potentially more fruitful
avenue might be how to better leverage the similarity
information contained in SG,∗ and AG,∗ to improve
transfer in other RL tasks and algorithms.

B. Limitations

Our results here suggest that using SG,∗ and AG,∗ as
similarity characterizations to improve transfer between
RL tasks has potential, but we acknowledge it currently

has various limitations. The most obvious is that SS2
is limited to finite MDPs that can be fully specified
(i.e. complete knowledge of the transition and reward
functions), and even in this case, computing SG,∗ and
AG,∗ can be get very expensive as the size of the state
and action spaces increase.

Another limitation we found in our experiments is
that results are strongly dependent on how one defines
the MDP for a given task. For example, DRL often
assumes that every action is available to the agent at
every step, which is not always the case. Choosing to
include action nodes for every action at every state
(where unavailable actions would be modeled by say,
returning to the current state with probability 1.0) will
produce different similarity values than omitting actions
nodes where the actions are not available. This is a
modeling choice for how to deal with obstacles in the
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gridworld, but has a significant effect on the similarity
values returned by SS2.

C. Future Work

Future work of interest on this subject could include
performing additional experiments to better characterize
the relationship between the state similarities returned
by SS2 and transfer performance between tasks. In
particular, we would find experiments that include MDP
environments other than the traditional gridworld of
interest. Another avenue would be assessing transfer in
the continual learning setting [16, 10], even with simple
gridworld tasks. How might we leverage similarity mea-
sures such as those from SS2 to continuously modify
an RL agent over a lifetime of performing a set of
tasks? Finally, an area of particular interest would be to
extend SS2 to operate on larger MDPs through sampling
techniques, such those used by [6, 7].

IX. CONCLUSION

We proposed the Structural Similarity for two MDPs,
or SS2, algorithm for computing state similarities be-
tween two MDPs. We proved that the result of SS2 can
be used to define a distance metric using results from
[26], upon which SS2 is based. We then showed that
by leveraging the state-to-state similarity results from
SS2 with RL transfer algorithms from [18], we could
improve transfer between tasks in a gridworld navigation
environment over those shown in [18] for the same
tasks. Furthermore, by incorporating action similarity
information from SS2 into the transfer algorithm, we
further improved transfer performance.

We also tested task-to-task similarity measures com-
prising the SS2 outputs and the Hausdorff and Kan-
torovich distance metrics, and found that transfer per-
formance did not correlate with those similarity scores.
Therefore, we conclude that, while the state-to-state
similarity values produced by SS2 between two MDPs
is useful for transfer, reducing those values into a single
scalar one, using the Hausdorff and Kantorovich dis-
tances in particular, do not produce useful measures of
task similarity for our environment and RL algorithm.
Future work should include additional verification of
these results with additional tasks and algorithms, and
investigate additional uses of information in SS2 for RL
tasks. Other natural extensions could include attempting
to apply SS2 to larger MDPs via sampling and graph
reduction as well as extending SS2 to return state-to-state
similarities for any finite number of tasks represented as
finite MDPs.
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APPENDIX A
MDP DISTANCE AND TRANSFER CORRELATION

To assess the effectiveness of the MDP Distance, as
discussed in Section VIII-A, we computed the Pearson’s
correlation coefficient, for all metric-method combina-
tions in their individual conditions, as well as across all
conditions combined [2]. These results can be seen in
full in Tables III and IV, regarding the final Kantorovich
and Hausdorff distances respectively. We desired a strong
negative correlation (i.e. greater distance implying worse
performance). There were two key takeaways from per-
forming this analysis:

1) No metric-method resulted in having the desired
negative correlation across all conditions combined
over all sizes, rewards, and rotations, using either
of the two final distance scores. The implication
here is that while the distance matrices can effec-
tively be used to perform transfer, they do not seem
to be predictive of transfer in the sense of simply
“higher distance” =⇒ “worse transfer”. This
is likely because the distances observed in each
experiment tended to group together (e.g. having
a larger reward in Song’s metric would lead to a
larger distance, scaled linearly, but not necessarily
any difference in transfer performance).

2) In individual experiments, some metric-method
combinations demonstrated correlation, although
note again that no combination had a consistent
correlation across the conditions. One reason why
our metric with its best method (i.e. state and
action transfer) did not exhibit correlation could be
the fact that regardless of the distance, the trans-
fer performance was quite good. This highlights
the need to further experiment in more complex
scenarios or perhaps different environments alto-
gether, which we hope to explore in the near future.
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TABLE II
FULL STATISTICAL RESULTS. ENTRIES ARE ”MEAN (STD)” FOR THE GIVEN ALGORITHM AND CONDITION.

SS2, AVG SS2, AVG-ACT SS2, STATE SS2, STATE-ACT Song, AVG Song, STATE Uniform, AVG Uniform, STATE
Condition
Lg, R1 11.3 (16.6) 26.1 (29.9) 66.0 (17.4) 84.2 (14.9) 14.6 (18.2) 4.3 (3.9) 9.0 (2.5) 4.6 (3.8)
Lg, R1, Rot 20.8 (21.2) 42.2 (33.0) 51.0 (19.0) 85.4 (14.8) 16.0 (18.8) 1.5 (3.2) 5.0 (5.5) 1.6 (3.4)
Lg, R100 11.1 (17.0) 25.9 (29.9) 66.1 (17.5) 83.8 (16.4) 14.4 (18.5) 4.3 (3.9) 9.1 (2.6) 4.6 (3.8)
Lg, R100, Rot 18.9 (19.8) 42.4 (32.7) 50.1 (19.5) 84.5 (16.1) 16.6 (18.9) 1.4 (3.1) 4.9 (5.4) 1.9 (4.5)
Sm, R1 47.9 (22.3) 67.1 (18.4) 75.7 (2.5) 86.6 (2.0) 45.9 (21.0) 11.6 (6.6) 10.5 (1.2) 7.2 (2.8)
Sm, R1, Rot 33.1 (24.5) 52.0 (30.8) 68.0 (10.7) 86.9 (9.6) 37.4 (20.7) 2.7 (4.6) 4.1 (3.2) 2.2 (3.2)
Sm, R100 47.9 (22.3) 67.1 (18.5) 75.7 (2.5) 86.6 (2.0) 46.2 (20.7) 11.6 (6.6) 10.5 (1.3) 7.2 (2.9)
Sm, R100, Rot 32.9 (24.5) 51.9 (30.6) 68.1 (10.6) 87.2 (9.0) 37.5 (20.9) 2.8 (4.6) 4.1 (3.2) 2.3 (3.3)

TABLE III
KANTAROVICH PEARSON CORRELATION RESULTS: DESIRED RELATION IS NEGATIVE.

SS2, STATE-ACT SS2, AVG-ACT SS2, STATE SS2, AVG Song, STATE Song, AVG Uniform, STATE Uniform, AVG
Condition
All 0.099 0.138 0.198 0.120 -0.011 0.117 0.211 0.095
Lg, R1 0.224 -0.083 0.168 -0.109 -0.081 0.025 -0.059 0.205
Lg, R1, Rot -0.159 0.084 -0.148 -0.088 0.174 -0.227 0.024 -0.015
Lg, R100 0.148 -0.072 0.140 -0.123 -0.084 -0.059 -0.060 0.190
Lg, R100, Rot -0.142 0.102 -0.135 -0.072 0.169 -0.264 0.032 -0.010
Sm, R1 0.156 -0.263 0.099 -0.343 -0.408 -0.371 -0.115 0.230
Sm, R1, Rot 0.208 -0.113 0.149 -0.161 -0.488 -0.382 -0.183 -0.021
Sm, R100 0.145 -0.261 0.113 -0.344 -0.408 -0.378 -0.119 0.216
Sm, R100, Rot 0.237 -0.114 0.156 -0.163 -0.474 -0.392 -0.172 -0.023

TABLE IV
HAUSDORFF PEARSON CORRELATION RESULTS: DESIRED RELATION IS NEGATIVE.

SS2, STATE-ACT SS2, AVG-ACT SS2, STATE SS2, AVG Song, STATE Song, AVG Uniform, STATE Uniform, AVG
Condition
All 0.014 -0.046 -0.056 -0.083 -0.042 -0.020 0.211 0.095
Lg, R1 0.017 0.015 -0.001 -0.039 -0.013 0.030 -0.059 0.205
Lg, R1, Rot -0.101 0.090 -0.160 0.044 0.225 -0.186 0.024 -0.015
Lg, R100 0.076 0.016 0.086 -0.007 -0.016 0.051 -0.060 0.190
Lg, R100, Rot -0.141 0.074 -0.146 -0.031 0.216 -0.228 0.032 -0.010
Sm, R1 0.260 -0.323 0.158 -0.222 -0.233 -0.275 -0.115 0.230
Sm, R1, Rot 0.150 -0.230 0.201 -0.188 -0.431 -0.244 -0.183 -0.021
Sm, R100 0.235 -0.320 0.171 -0.223 -0.233 -0.266 -0.119 0.216
Sm, R100, Rot 0.162 -0.229 0.200 -0.186 -0.425 -0.263 -0.172 -0.023
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